Surface/atmosphere exchange of NH₃ above managed grassland Long term low-cost monitoring and short-term intensive campaigns

> <u>Chris Flechard</u>, Yannick Fauvel, Adrien Jacotot, Rémy Delagarde, Anne-Isabelle Graux, Nadège Edouard

National Research Institute for Agriculture and Environment UMR SAS / UMR PEGASE INRAE, Rennes, France christophe.flechard@inrae.fr

WMO-GAW, SAG-TAD, Geneva, 05 October 2022

Processes of bi-directional NH₃ exchange over managed grassland : grazing emissions (spring, summer)

Processes of bi-directional NH₃ exchange over managed grassland : manure/fertilizer application

> Assessing the NH₃ budget of productive/managed grasslands

Alternating net emission and net deposition phases

- Short term emission peaks during grazing & fertilization (a few days to weeks)
- Bi-directional transition phase. Flux sign depends on temperature, moisture, ecosystem N status
- Winter half-year: dry deposition prevails
 - What is the net annual balance?

Measurement strategy to characterize the NH₃ budget

- Intensive measurement campaigns (a few weeks in spring/summer)
 - Short-term (hours-days) response to sudden ecosystem disturbances (grazing, fertilization)
 - High resolution (hourly) flux data for process understanding
 - Use data to develop/parameterize/calibrate emission models
- Long-term, low-resolution, low-cost flux measurements (e.g. COTAG)
 - Low maintenance and low frequency allow multi-annual measurements
 - Robust data for long-term budgets, but not adequate for process understanding

Instrumental setup & inter-comparison

SAS

Grazing-related NH₃ emissions: aerodynamic gradient method using Los Gatos quantum cascade laser (QCL) & lift system

Intensive NH₃ flux campaign Spring 2022 - overview

- Grazing : moderate but lasting emission fluxes driven by urea hydrolysis on soil surface
- Organic manure application: instantaneous release (volatilization) by NH₄⁺-rich substrate (phase equilibrium)

NH₃ measurement intercomparison: Los Gatos QCL vs DELTA

NH₃ concentration & gradient intercomparison: Los Gatos QCL vs COTAG

Sap-filling of COTAG-derived flux data

COTAG: relaxed aerodynamic gradient method

$$F_{\chi} = -k u_* \frac{\partial \chi}{\partial \left[\ln \left(z - d \right) - \psi_{\rm H} \left\{ \zeta \right\} \right]}$$

- Turbulence and vertical concentration gradient averaged over several hours or days,
- …but only valid for near-neutral or slightly unstable atmospheric conditions

C. R. Flechard et al.: The ammonia budget of fertilised grassland

Swiss grassland NH_3 flux study 2006-07

INRA

L'INSTITUT agro Ren

Angers

Biogeosciences, 7, 537–556, 2010 www.biogeosciences.net/7/537/2010/

Fig. 6. Cumulative 17-month NH_3 exchange with contributions from background exchange and slurry application events.

Managed grasslands are (generally) net NH₃ sources

- Large emissions by manure applications
- Significant emissions by grazing herbivores (though possibly reduced *per capita* compared with indoor dairy systems)
- Dry deposition / bi-directional exchange in background conditions still relevant for net long term NH₃ budget, and for N-cycling process understanding
- Magnitude and sign of NH₃ flux depends on ecosystem N status and weather

Still too few long-term datasets to support model development

- Field measurements: combine low-cost and high-tech techniques
- Intercomparison of instruments crucial for NH₃ !!
 (See Twigg et al. 2022 AMT paper, <u>https://doi.org/10.5194/amt-2022-107</u>)
- Link up ecosystem biogeochemistry and surface-atmosphere exchange.
 Inferential modelling requires adequate quantification of surface emission potentials.
- Even COTAG-type methods require good modelling for defensible gap-filling

