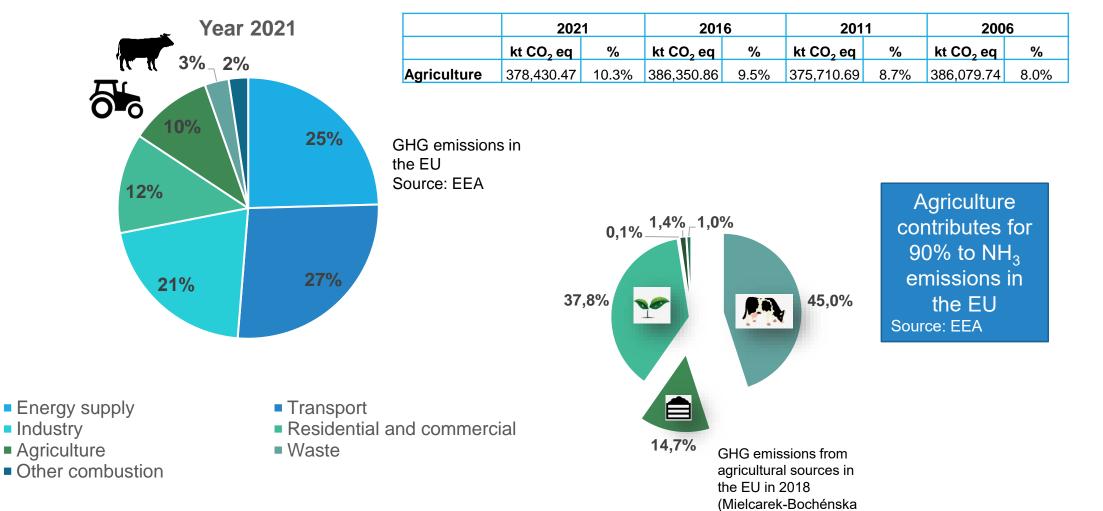
74th Annual Meeting of European Federation of Animal Science EAAP 2023

> 26th Aug – 1st Sep 2023 Lyon, France


V. Becciolini¹, A. Mattia¹, M. Merlini¹, G. Rossi¹, F. Squillace¹, G. Coletti², U. Rossi² and M. Barbari¹

¹ Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy

² Project & Design S.r.l.s., Firenze, Italy

GHG and NH₃ emissions from agriculture & livestock sector

& Rzeznik, 2021)

UAV-based techniques for point-source emissions... from landfills and oil/gas plants to dairy farms?

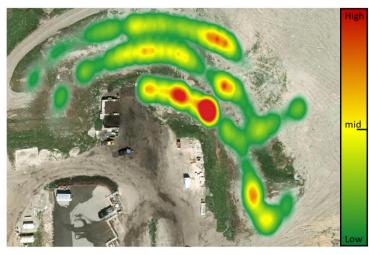
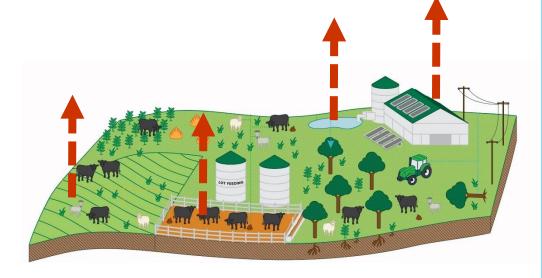
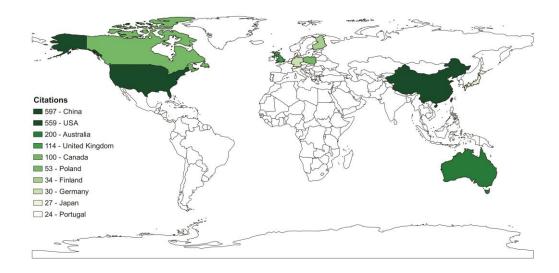



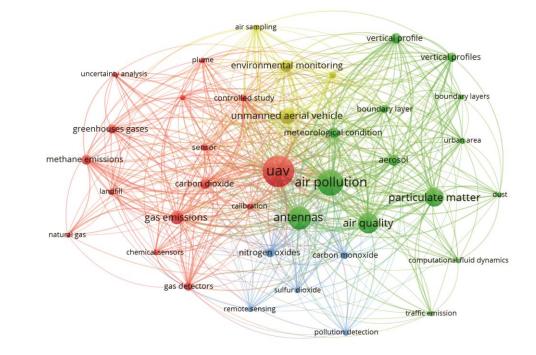
Photo credit: Emran et al. 2017. Low-altitude aerial methane concentration mapping. *Remote Sensing*.

Q: Where are emissions coming from? How much? What are the spots to focus on?

Q: Where are emissions coming from? How much? What are the processes to focus on? How far can gases be spread?

MUNDOO CUT


Exponential growth of applied research in UAV-based atmospheric chemical sensing


In 2021 and 2022 68 scientific papers were published on the topic

=

Number of scientific papers published in the previous 9 years

Bedin et al. 2023. State of the art and future perspectives of atmospheric chemical sensing using Unmanned Aerial Vehicles: a bibliometric analysis. *Sensors*. In press.

...questions?

- Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?
- 2. What type of equipment is required?
- 3. Can low-cost technologies be employed for this purpose?
- 4. What methods can be applied to map and estimate gaseous emissions?
- 5. How can a protocol be built and validated?

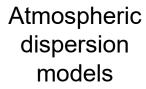
1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?

HUNDOULUS

Uncertainties in emission data

- GHG assessment from livestock farming
- Mitigation practices efficacy
 assessment

Decision support system


www.cccfarming.eu

Evaluate the potential use of drones equipped with sensors to identify hotspots of CH_4 and CO_2 emissions at farm scale linked to a real-time kinematic positioning system

Study a rapid top-down approach to derive emission fluxes in dairy farms

Emission fluxes Atmospheric sampling

Platforms		Ground-based	 Heavy and accurate instrumentation Sampling void between ground and high altitudes 	
	15	Aircrafts and UAVs	 High geospatial coverage Payload and energetic limits (small aircrafts) 	

Weight	Payload limit	Max air speed	Wing type	Propeller type	
--------	---------------	---------------	-----------	----------------	--

100 g to 20 kg

- Fixed-wing •
- (Liquid fuel)
- Rotary-wing Batteries

Wind	Ground-based	 Easier data processing Can introduce measurement uncertainty 	
measurement	Onboard UAVs	 Coupled gas-wind measurement Wind field of the LUV consisterform 	0
Flux quantification		Wind field of the UAV can interfere	

Type of anemometer

• Cup anemometer

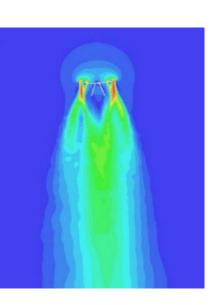
requires

accurate wind

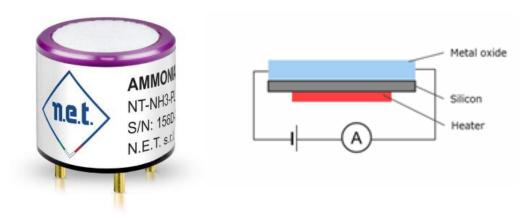
speed and

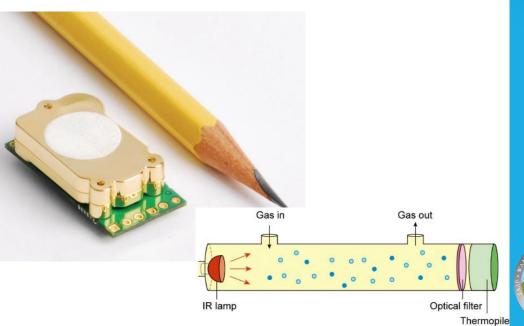
direction

- 2D ultrasonic anemometer
- 3D ultrasonic anemometer



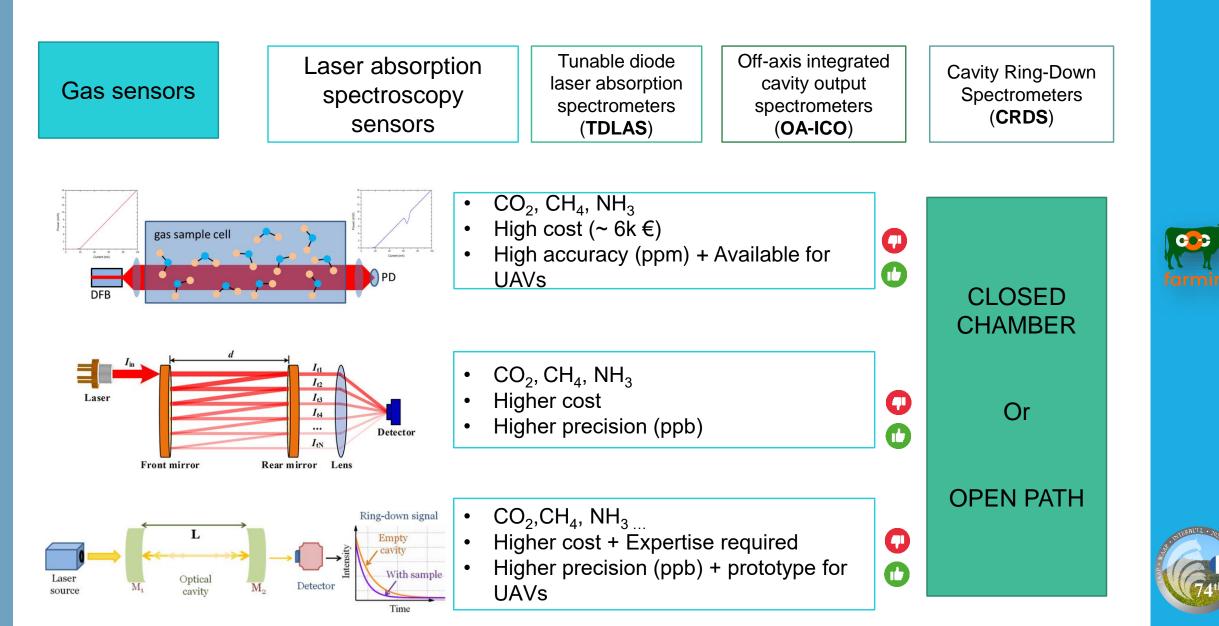
Gas	Air samples collected onboard the UAV	 High performance instrumentation Discretized gas measurements (low spatial resolution) 	
measurement approaches	Air sampled through tubing connected to the UAV	 High performance instrumentation Caution due to lag-time Tethering causes logistic issues and reduced range of motion 	() ()
	Air sampled live onboard the UAV	 Requires lightweight instruments (lower accuracy) Continuous gas measurements (high spatial resolution) Payload may decrease flight autonomy Downwash affects air sampling 	





Gas sensors Sensor choice depends on the target gas	Electrochemical sensors	 NH₃ Limited cost (hundreds €) + Low power consumption Cross-sensitivity, drift, limited lifetime 		
	Non-dispersive infrared sensors (NDIR)	 CO₂ Limited cost (hundreds €) + Higher lifetime Accuracy (ppm) affected by T, P_{atm} + Higher power consumption 		
	Laser absorption spectroscopy sensors	Tunable diode laser absorption spectrometers (TDLAS)Off-axis integrated cavity output spectrometers (OA-ICO)Cavity Ring-Down Spectrometers (CRDS)		
species (CO ₂ , CH ₄ , NH ₃)	Concentration is determined measuring target gas absorr			

Concentration is determined by measuring target gas absorption peaks



detector

3. Can low-cost technologies be employed for this purpose?

3. Can low-cost technologies be employed for this purpose?

...as an alternative

Ready to use commercial solutions

BUT!

- Cost (from 20k €)
- Sensor calibration under standard conditions
- Sensor lifetime
- Are dispersion models suitable? Accurate evaluation is required

4. What methods can be applied to map and estimate gaseous emissions?

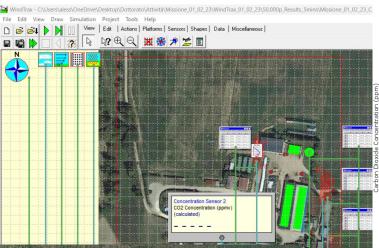
Flux quantification approaches (short range dispersion)	Mass balance modelling	 Requires a constant wind field between upwind and downwind measurements
	Gaussian plume inversion modelling	 Gaussian statistics are used to infer gaseous fluxes downwind a point source Requires large amounts of time averaging
	Lagrangian stochastic modelling	 Simulate the path of particles as they travel with the local wind field Computational time may be high Multiple simultaneous measurements are required when multiple sources are present

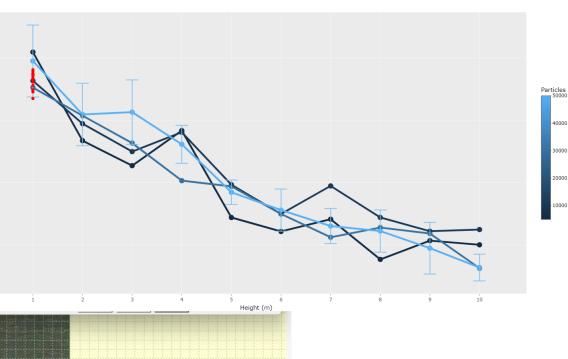
The methods require upwind (i.e. background) and downwind gas concentration measurements

Modelling expertise is required OR Specific software environments that incorporate dispersion models

5. How can a protocol be built and validated?

- 1. Selection of sensors and flux quantification method (model)
- 2. Sensor validation under laboratory conditions (mandatory for electrochemical and NDIR sensors)
- 3. Based on the chosen model, plan field tests to meet requirements and assumptions with <u>controlled gas sources</u>
- 4. Address sampling issues, assess the magnitude of errors, validate measurements, refine the protocol
- 5. Validate measurements in uncontrolled field conditions





1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?

IV Convegno AISSA#under40 Campus di Fisciano, 12-13 luglio 2023 Corso di Agraria-DIFARMA - Università degli Studi di Salerno

Deducing emission rates from gas concentrations in a dairy cattle farm through a backward Lagrangian stochastic method-based model

Alessio Mattia¹, Marco Merlini¹, Rafael Pinheiro Amantea¹, Gabriele Coletti², Federico Squillace¹, Giuseppe Rossi¹, Matteo Barbari¹, Valentina Becciolini¹.


¹Department of Agriculture, Food, Environment, and Forestry (DAGRI) University of Florence, Florence, 50144, Piazzale delle Cascine, 18 ² Project & Design s.r.l.s., Florence, 50142, Italy

UNIVERSITÀ DAGR DEGLI STUDI DEPARTMENT OF AGRICULTURE FOOD, ENVIRONMENT AND FORESTRY

... Concluding

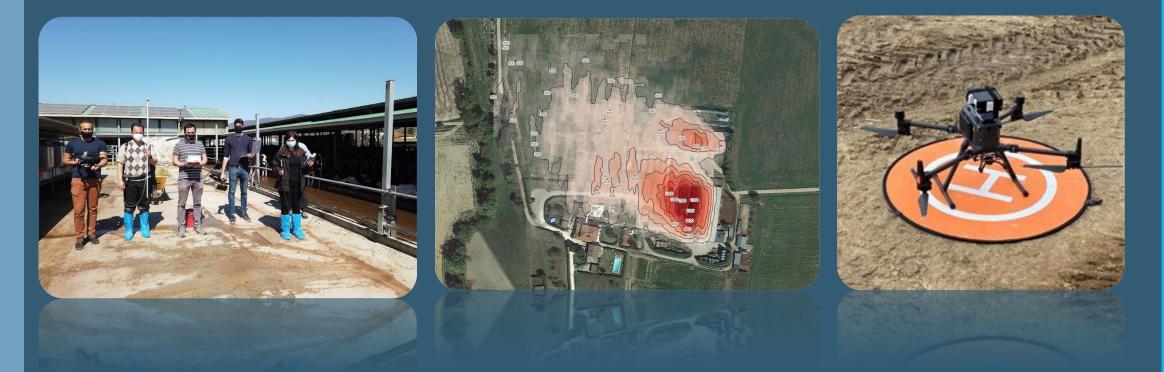
Opportunities

Rapid and real-time assessment of emission fluxes Identification of critical processes Development of decision support systems for farmers

Limitations

Sensing technologies (accuracy, limits of detection, size/weight) Costs

Dispersion models


Expertise

Thank you for your attention!

Valentina Becciolini, PhD

valentina.becciolini@unifi.it