How to mitigate methane and ammonia emissions at the farm level with innovative approaches

EAAP Lyon, 28 August 2023

Paul Galama, H.J. van Dooren, W. Ouweltjes, H. de Boer, C. Schep

Challenge to combine reduction emissions with land use planning

1.Optimize nutriënt cycle with ANCA tool

2. Reduction potential NH3 and CH4

3.Research topics, innovations

Optimize nutrient cycle with ANCA tool (Annual Nutrient Cycle Assessment)

Soil-, crop-, grassland- and grazing management

ANCA tool on farm level Annual Nutriënt Cycling Assessment

Gives insight in:

- NPC efficiëncy in parts of cycle
- Crop production
- Pollotion soil, air and water

Learning networks

Integrated approach:

- Emissions NH3 and GHG
- Water quality
- Biodiversity

153 dairy farmers and 45 farm guiders 4 years

Goal: 155 gram Crude protein per kg dry matter

Explanation ammonia emission per ha

% emission

- Data 2021 ANCA tool
- 12000 farms
- 47 variables
- Select most important

melk ton ha graspr_dmst_kgn rants_geh_re Intensity stalemreddr -- y=x Regression opb gras d (milk / ha) vPercGras 200 verl_bedbal1_ha stalsysdrijf melk koe 50 jvper10mk yobs N- manure per ha mais_dmst_kgn 8 gr geh vem grassland dzh nbodem over <u>κ</u>- = graspr_kmst_kgn 0.84 gk aandeel gr_geh vPerc_zand_be **Crude Protein** 150 250 200 vPerc klei be gram/kg dm rantsoen eiweig mais_dmst_kgp reduction Stable total ration 00 0 0

Other important developments to reduce ammonia

More grazing Dilution with water Low emissions floors

Total 50 to 70% reduction

Reduction potential Methane (CH4) Goal: 24% less CH4 on Dairy farm in 2030 (ref. 2021)

Source: WUR 2022

in prep.

Vellinga, Groenestein

Scenario	Reduction
Manure management	
* cool slurry	40 - 80%
* oxidation	60 - 90%
* digest	45 - 95%
* more grazing	10 - 35%
Rumen cow	
* breeding	0.2–0.7% Per year
* additives	20-30%
* ration	0-10%

Research topics to reduce NH3 and CH4

Feeding: Less protein Amount of maize Additives

Stable:

spraying water on floor fast remove slurry separation feces and urine clean air

Manure:	
additives	
cooling	
catch CH4	

35

Detailed research:

Feeding

Emissions

Grassland management

Breeding

Welfare

Biodiversity

Farm: 500 cows 350 ha 25 fte

Dairy Campus: case – control units of each 16 cows

Examples floor types in practice

Swaans concrete floor G6

Proflex Meadow

Green flag floor with flaps

New permeable floor type

40 to 60% reduction ammonia emission:

spraying water and adding urease inhibitor

• adding acid to urine: reduces NH3 and CH4

CowToilet separates 35% of urine production

35% reduction of NH3

Examples remove slurry or feces from stall for storage in covered silo or digesting

Separation feces and urine

Freewalk housing with bedding cleaner

Sand bedding to separate urine

Lely sphere

Network of farmers in preparation

Lely Sphere: more than 75% reduction ammonia stall

3 manure products

Cooling manure

■Goal: < 8- 10 °C

- Result cooling: 8.9 °C, not cooling 13.4 °C
- In august/september 7 to 9 °C difference
- Indication reduction:

Methane: - 43%

Ammonia: +5%

Cooling manure in barn with cold water / glycol

Next step: cooling outside barn

Attention points

1. Increasing influence of society (emissions, welfare, biodiversity)

2. Integrate strategies to reduce GHG and ammonia

3. Innovate what fits to your climate and housing system:

- management: cow, feeding, crops, grazing, fertilizing, ...
- investments: housing, manure management,

4.Optimize on farm level by use of a nutriënt cycle tool and sensor technology

Thanks

Paul.galama@wur.nl

