Holistic perspectives on climate care cattle farming

EAAP Lyon, 28 August 2023

Gert van Duinkerken

What will be discussed?

- Where are we with greenhouse gas (GHG) emissions?
- What are the mitigation pathways?
- Contribution of the Climate Care Cattle Farming project
- Need for integral solutions

Global net anthropogenic emissions (1990-2019) of greenhouse gases (IPCC, 2022)

Anthropogenic GHG emissions include:

CO2 from fossil fuel combustion and industrial processes (CO2-FFI); net CO2 from land use, land-use change and forestry (CO2-LULUCF); methane (CH4); nitrous oxide (N2O); fluorinated gases (HFCs, PFCs, SF6, NF3)

3

Global anthropogenic GHG emissions by gas relative to 1990 (IPCC, 2022)

The solid line indicates central estimate of emissions trends. The shaded area indicates the uncertainty range.

Targets

- Paris Agreement' (2016):
 - hold increase in global temperature to well below 2°C above pre-industrial levels
 - pursue efforts to limit it to 1.5°C
 - in a way that does not threaten food production
- Global Methane Pledge' (2021):
 - 2030: global methane emissions reduced by at least 30% below 2020 levels
- EU 'Green deal' (2019):
 - total GHG emissions at net zero by 2050 → climate neutrality

Forecasts EU agricultural GHG emissions

 With unchanged policies and efforts, and based on projections per member state, a reduction of only 2% is expected in the time span 2005 to 2030

European Environment Agency, 2022 ⁶

IPCC (2022) Mitigation options, potential in 2030

In short: "many options" -

Agriculture, forest and other land use (IPCC, 2022)

Mitigation options

AFOLU

Carbon sequestration in agriculture Reduce CH₄ and N₂O emission in agriculture Reduced conversion of forests and other ecosystems Ecosystem restoration, afforestation, reforestation Improved sustainable forest management Reduce food loss and food waste Shift to balanced, sustainable healthy diets

Potential contribution to net emission reduction, 2030 (GtCO₂-eq yr⁻¹)

Sources of anthropogenic methane emissions (%)

	Global*	EU**
Energy	37	19
Waste	19	26
Agriculture	44	53
Enteric fermentation	29.5	43.3
Manure management	3.4	9.5
Rice cultivation	10.7	0.11
Agric. waste burning	0.5	0.02

*Janssens-Maenhout et al. (2017) ; **EU Methane Strategy

Meta-analysis enteric CH4 mitigation (Arndt et al, 2022)

Identified strategies to decrease enteric CH4 emissions

- product-based (PB; CH4 per unit meat or milk)
- absolute (ABS)
- maintaining or increasing animal productivity (AP; weight gain or milk yield)

Database: 430 peer-reviewed studies, which reported 98 mitigation strategies

classified into three categories

Enteric methane mitigation strategies (Arndt et al., 2022)

Meta-analysis enteric CH4 mitigation (Arndt et al, 2022)

Meta-analysis identified 3 effective PB and 5 effective ABS strategies

PB strategies decreased product-based CH4 emissions by on average 12% and increased animal production by a median of 17%

ABS strategies reduced product-based CH4 emissions by an average of 17% and daily CH4 emissions by an average of 21%.

A Projected change in global emissions between 2012 and 2030 under different scenarios

(Arndt et al., 2022)

C Projected change in European emissions between 2012 and 2030 under different scenarios

Methane from dairy farms

- The Netherlands
 - \approx 80% enteric methane
 - ≈ 20% from manure storage and handling

 Mitigation scenario's studied for Dutch sector

(Vellinga & Groenestein, 2023)

Annual methane emissions by Dutch dairy sector could be reduced by 23 to 54% by 2050

	Min	Max
Reduction methane from manure,		
barns with external manure storage	e	
Cooling	25%	75%
Oxidation	60%	90%
Fermentation	46%	96%
More grazing (manure in pasture)	11%	35%
Reduction enteric methane		
Breeding	0.22%/yr, total 5%	0.68%/yr, total 15%
Feed additives	20%	30%
Diet composition	0%	10%

Vellinga & Groenestein, 2023

Focus in EU agriculture

- Integrated solutions to mitigate GHG emissions; simultaneously optimise nitrogen management (reduce ammonia emission and nitrate leaching)
- Strong need for applicable measures to reduce emissions along the cattle chain
- 2/3rd of cattle GHG-emissions have an on-farm origin

(enteric methane, manure management, crop cultivation etc.)

1/3rd has an off-farm origin

(production fertilizers/concentrates, processing, transport farm products)

Climate Care Cattle Farming

How to reduce emissions?

Need for integral solutions Awareness of synergies & trade-offs

Example: trade-offs on-farm

Trade-off CH₄ and N emission at animal level

- Simulations with mechanistic `rumen' model
 - Dutch Tier-3 model for enteric CH₄ in cows
- Calculations on a range of 40 diets, including effect of grassland management

Available online at www.sciencedirect.com

Dietary strategies to reducing N excretion from cattle: implications for methane emissions J Dijkstra¹, O Oenema² and A Bannink³, 2011

N versus CH₄ emission

Dijkstra et al (2011)

N versus CH₄ per kg milk

Dijkstra et al (2011)

Trade-off CH4 and N emission at animal level

Trend of less CH4 with more N excreted per kg milk

Simulated general trend indicates (Dijkstra *et al* 2011)
↓ 1 g N excreted/kg milk ↑ 0.24 g CH₄/kg milk

about 1% of nitrogen in soil gets lost as N₂O thus, 1 g N \approx 0.01 g N₂O versus 0.24 g CH₄ GWP N₂O : GWP CH₄ = 265 : 28 (GWP = Global Warming Potential) thus, less N excretion generally compensated by more CH₄

However, a lot of variation!

Take home messages

- Targets GHG mitigation will not be met with unchanged policies and efforts
- Broad range of mitigation options available, also in agriculture
- Level of adoption is important \rightarrow identify potential barriers
- Integral sustainable solutions are required
 - Knowledge and awareness of trade-offs & synergies
 - At different scales
 - Highly complex, and highly variable
- CCC Farming is studying this at whole farm chain level

gert.vanduinkerken@wur.nl

Thank you for your attention !

