Modeling methane emission from dairy cows, barn, and storage

S. Lashkari¹, F. R. Dalby², C. F. Børsting¹

¹Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg research center Foulum, DK-8830 Tjele, Denmark

²Department of Biological and Chemical Engineering, Environmental Engineering, Aarhus

University, DK-8000 Aarhus, Denmark

Introduction I

- ✓ Climate impact from agriculture and <u>farm account in Denmark</u>
- ✓ Contribution of ruminant livestock production:
 - Enteric
 - Barn emission due to manure/slurry management

Feed composition affects barn and storage emission (Hassanat and Benchaar, 2019)

To develop a model to quantify enteric methane emission and emission from

barn and storage based on diet composition, performance level and farm management to be used in farm account.

Materials and methods

Overall model description

State-variables = variable that change with the time such as crude fat, crude protein, volatile fatty acids, methanogen growth rate, methane emission.

Define a farm, storage condition

General	
Animal class	cattle
Animal category	COW
Animals, section-1	200
Floor type	cubicle + slatted floor, ring channel
Removal technology	ring channel
Slurry under path	no

Technologies		
Acidification	none	
Acid dose, kg m-3	0	
Slurry cooling	none	
Cooling effect, w m-2	20	
Cooling time, days yr-1	365	

Management	
Ventilation	natural
Pit depth, cm	120
Slurry removal frequency, days	28
Residual slurry depth, cm	40
Barn temperature, deg C	variable
Ventilation rate, m3 h-1 animal-1	600
Wash frequency, days	NA
Wash water, kg animal-1	0
Empty time of section, days	0
Grazing days, days yr-1	0
Grazing hours, h day-1	0
Grazing start, month	May
Excretion ratio, deeplitter/total	0
Pit/floor ratio	0.66
Area, m2 animal-1	8
Production area, m2 section-1	1600
Pit area, m2 section-1	1056

Three different diets

	Proportion, g/kg of diet			
Feedstuffs	49% Concentrate	70% Concentrate	91% Concentrate	
Grass clover	255	128	0	
Corn silage	243	121	0	
Barely straw	13	50	88	
dried beet pulp	120	160	201	
Barley	222	232	239	
Wheat, NaoH treated	0	77	155	
Dried distillers' grain	0	69	138	
Rapeseed meal	79	106	134	
Soybean meal	54	27	0	
Molasses	4	12	21	
Palm fat	2	3	4	
Vitamin mineral supplements	9	15	20	

Calculation of feces composition

Feedstuffs (diets) composition

Extracting composition of individual feedstuffs from Norfor feed table:

- > Organic matter, crude protein, crude fat, starch and sugar
- Residual fiber = organic matter crude fat crude protein starch sugar

Digested amount of different fractions in the diets

- Digested organic matter
- Digested crude fat
- Digested crude protein
- Digested residual fiber = digested organic matter digested crude fat digested crude protein digested starch (= 100%) - digested sugar (= 100%)
- > Undigested residual fiber = Residual fiber digested residual fiber
- > Degradable undigested residual fiber = Undigested residual fiber indigestible NDF (iNDF)

Slurry volume calculation

> N in urine $(g/d) = 12 + 0.3 \times \text{Nitrogen intake} (g/d; NRC, 2021).$

Urine volume (kg/d) = 1.3 × dry matter intake (kg/d) + (1.1 × Na% in diet + 0.5 × K% in diet +

0.13 × N% in diet) - uncorrected milk × (0.1 + 0.03 × milk protein%; Bannink et al. 1999)

Feces volume (kg/d) = -1.3 + 2.2 × dry matter intake (R2 = 0.82; RMSE = 6.35; a data set from

Animal and Veterinary Science Department)

PLOS ONE

RESEARCH ARTICLE

A mechanistic model of methane emission from animal slurry with a focus on microbial groups

Frederik R. Dalby^{1*}, Sasha D. Hafner^{1,2*}, Søren O. Petersen³, Andrew Vanderzaag⁴, Jemaneh Habtewold⁴, Kari Dunfield⁵, Martin H. Chantigny⁶, Sven G. Sommer^{1*}

Results and discussion: Enteric methane

Enteric methane, tons/year/200 cows

- Dry matter intake = 23.3 kg/day
- > Enteric methane $(g/d) = 76.0 + 13.5 \times dry$ matter

intake (kg/day) – 9.5 × ether extract (% of DM)

10

+ 2.2 × NDF (% of DM; Niu et al., 2017)

49% Concentrate	70% Concentrate	91% Concentrate

Diet composition, g/kg DM of diet

	Crude protein	Ether extract	Neutral detergent fiber (NDF)	Residual fiber	iNDF
49% Concentrate	27	34	311	459	54
70% Concentrate	26	37	297	445	60
91% Concontrato	26	30	283	/13.0	66

Results and discussion: barn and storage

Methane, tons/year/200 cows

Excreted, tons/year/200 cows

Degradable undigested residual fiber

Undegradable residual fiber

According to preliminary result of the present model the variation in feed composition:

- \checkmark Has an impact on enteric methane.
- ✓ Does not have a considerable impact on the barn and storage methane emission.

Thanks for your attention

Funded by Ministry of Food, Agriculture and Fisheries and Aarhus University.

Supplementary Calculation of feces composition

- Feedstuffs composition
- > Extracting composition of individual feedstuffs from Norfor feed table

Digested amount of different fraction

Digested organic matter (g/d) = organic matter intake $(g/d) \times 0.73$

Digested crude fat $(g/d) = 0.767 \times crude$ fat intake $(g/d) - 6.6 \times dry$ matter intake (kg/d)

Digested N (g/d) = $0.962 \times N$ intake (g/d) - $8 \times dry$ matter intake (kg/d)

Digested residual fiber (g/d) = digested organic matter - digested crude fat - digested crude protein - digested starch

(= 100%) - digested sugar (= 100%)

Residual fiber (g/d) = organic matter - crude fat - crude protein - starch - sugar

Undigested residual fiber (g/d) = total residual fiber - digested residual fiber

Degradable undigested residual fiber (g/d) = Undigested residual fiber - indigestible NDF (iNDF)