

Fermented rapeseed cake in dairy cows' nutrition mitigates methane emission and production

<u>Cieślak A</u>.¹, Gao M.¹, Haihao H.¹, Gogulski M. ¹, Ruska D.², Nowak B.¹, Szejner A.¹, Puchalska J.¹, Światłowski J.¹, Szumacher-Strabel M.¹

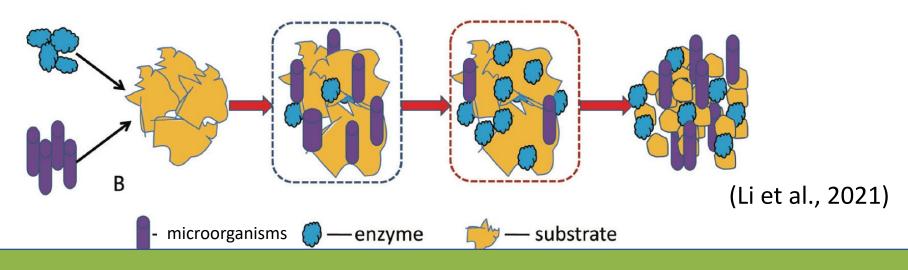
¹ Department of Animal Nutrition, Poznań University of Life Sciences, Poland; ²Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Poland; ³Faculty of Agriculture, Institute of Animal Sciences, Latvia University of Life Sciences and Technologies, Latvia

The study was financed by European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No 696356 for research carried out within the ERA-GAS/ERA-NET SUSAN/ICT AGRI project CCCfarming (SUSAN/II/CCCFARMING/03/202) and National Science Center, Poland (Grant No. 267659/7/NCBR/2015).

Introduction

(USDA, 2022)

- global production 82.5 million tons in 2022
- 38 million tones produced as by-products
- good source of protein ~ 35%
- good source of fat ~ 10%


Introduction

The solid-state fermentation technology can:

- degrade plant lignin and cellulose
- reduce glucosinolate level
- improve protein content

Introduction

Fermented sources of protein can:

- change the number/proportions of microorganisms
- favour increased propionate production
- decrease methane emission?

Hypothesis

Fermented Rapeseed Cake (FRC)

as an alternative for rapeseed cake (RC)

in dairy cows' diets

modulates ruminal fermentation

and decreases CH_4 emission.

To evaluate the impact of FRC on ruminal fermentation,

CH₄ emission, and milk production in lactating dairy

COWS.

Material and	Material and Methods	
Item	RC ¹	FRC ²
Chemical composition, g/kg DM		
Organic matter	931	930
Ash	69	70
Crude protein	361	386
Neutral detergent fiber	248	271
Ether extract	103	95

¹RC - rapeseed cake

²FRC - fermented rapeseed cake (patent-pending procedure No. 422849)

RC vs. FRC 28.75 (FRC25), 57.5 (FRC50), 86.25 (FRC75), and 115 (FRC100) g/kg diet of FRC

RC *vs.* **FRC (**115 g/kg diet = 2.65 kg/day)

RC *vs.* **FRC** (115 g/kg diet = 2.65 kg/day)

Diet composition	g/kg of DM
Maize silage	354
Lucerne silage	88
Grass silage	83
Beet pulp	111
Brewer's grain	111
Barley/wheat grain	97
Concentrate	31
Mineral-vitamin mixture	10
RC/FRC	115

RC vs. FRC 28.75 (FRC25), 57.5 (FRC50), 86.25 (FRC75), and 115 (FRC100) g/kg diet of FRC

RC *vs.* **FRC (**115 g/kg diet = 2.65 kg/day)

RC *vs.* **FRC** (115 g/kg diet = 2.65 kg/day)

Poznań University of Life Sciences Universytet Przyrodniczy w Poznaniu

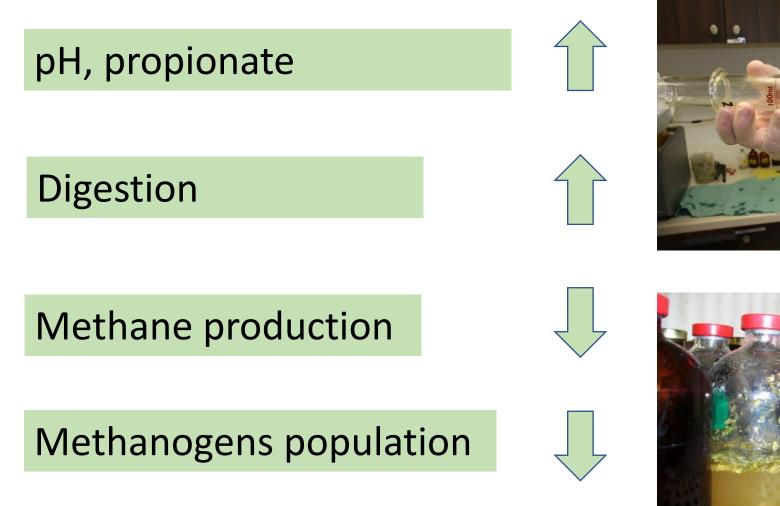
- Basic rumen
 parameters
- Total gas
 production
- Methane
- Digestibility

- Basic rumen
 parameters
- Methane
- Digestibility
- Microorganisms

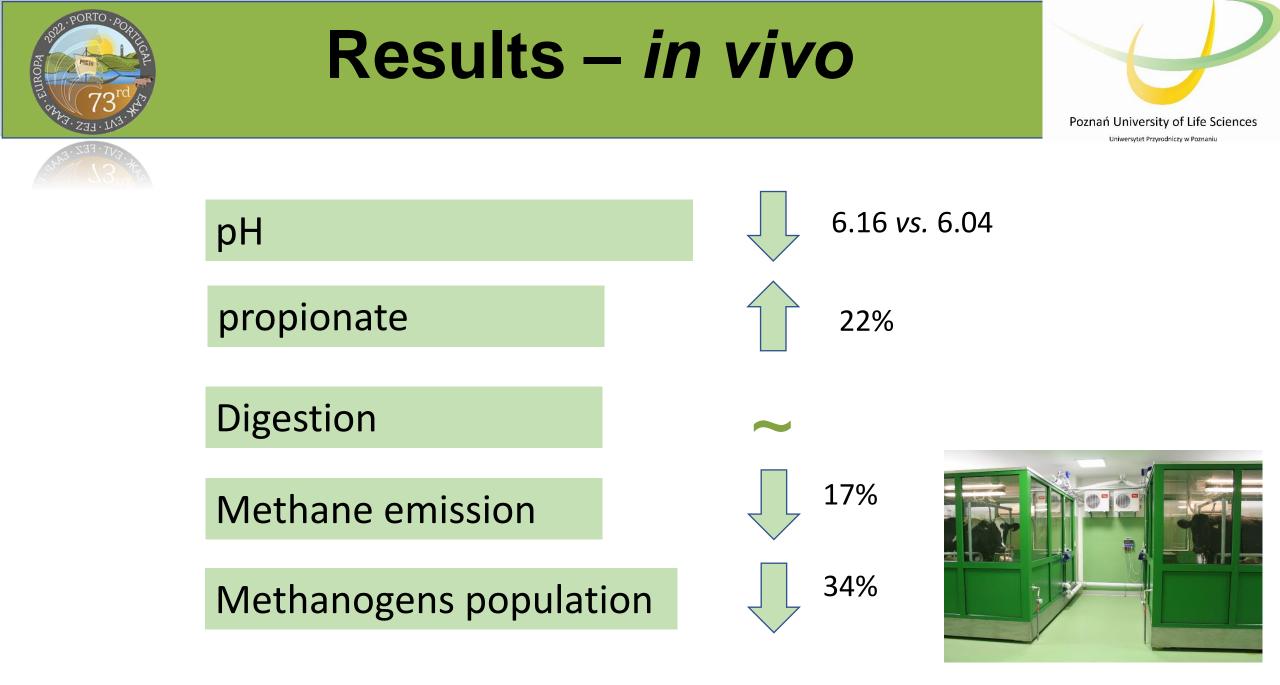
- Basic rumen
 parameters
- Methane
- Digestibility
- Microorganisms

Statistical analysis

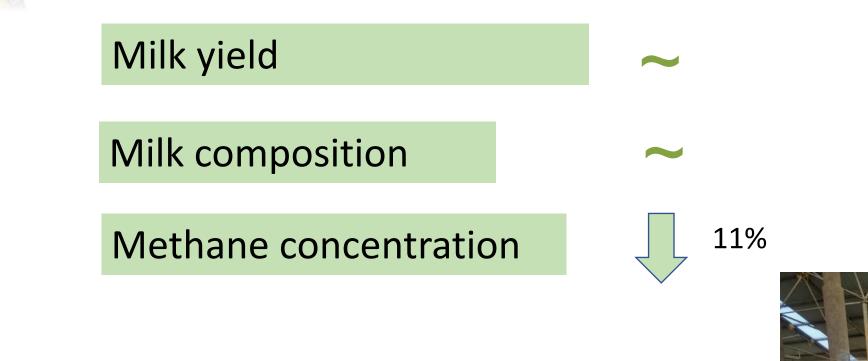
Experiment 1, an independent *t*-test (PROC TTEST procedure)Experiment 2, a one-way ANOVA model with PROC GLM procedure. Linear, quadratic, and cubic contrasts were used to determine the effects of the FRC dose.


Experiment 3, PROC MIXED procedure for a crossover design. Tukey's post hoc test was used to estimate the differences between means.

Experiment 4, an independent *t*-test. The means of both groups were compared through the PROC TTEST procedure.



Results – in vitro



Results – in vivo

Conclusions

2.65 kg dietary FRC per day per cow can effectively mitigate rumen methane emission by 11-17%

reducing the methanogens population by 34% and increasing propionic acid concentration.

Thank you very much!

Poznań University of Life Sciences

