Challenges for climate care dairy farming in Netherlands

EAAP, Porto

6 September 2022, Paul Galama, Jelle Zijlstra, Abele Kuipers

Topics

- 1.N crisis
- 2.Reduction potential NH3 and CH4
- 3.Research and development on research and pilot farms
- 4. Towards resilient farming

Trend in environmental fields the Netherlands

Production 1945 -----1985

Animal welfare 1970 -----

Nitrate and phosphate leaching

З

The Dutch dairy sector

- 16.000 dairy farms
- •50 ha per farm maize 0 – 20 % of farm area
- Intensive: 14.000 kg milk/ha; 850.000 kg/farm

N per ha European countries in 2017

Source: CEIP 2019, WUR: W. de Vries) 5

Protest farmers and clash opinion National - Local

Challenge to combine reduction emissions with land use planning

Intensive land based Extensive land based

Agro park

Nature 2000 area

Cities, roads, etc

Topics

1.N - crisis
2.Reduction potential N and GHG
3.Research and development on research and pilot farms
4.Towards resilient farming

How to reduce emissions?

Reduction potential NH3 on farm level (ref. 2021)

Strategie	NH3 reduction
Management	
20 gram less Crude protein per kg DM	20%
Less young stock	5%
More grazing	5%
Dilute manure with water (field)	25%
Techniques in barn	
Flushing floor	10-20%
Floor innovations (separation)	30-40%

LINVERSITY & RESEARCH Total reduction management and techniques 50-70%

Reduction potential Methane (CH4) Goal: 24% less CH4 on Dairy farm in 2030 (ref. 2021)

Scenario	Reduction
Manure management	
* cool slurry	25 - 75%
* oxidation	60 - 90%
* digest	46 - 96%
* more grazing	11 - 35%
Rumen cow	
* breeding	0.22–0.68% Per year
* additives	20-30%
* ration	0-10%

Source: WUR 2022 Vellinga, Groenestein in prep.

Topics

1. N - crisis
2. Reduction potential N and GHG
3. Research and development on research and pilot farms
4. Towards resilient farming

Learning networks

4

153 dairy farmers and 45 farm guiders 4 years

Goal: 155 gram Crude protein per kg dry matter

Optimize nutrient cycle

(Ongoing) research at Dairy campus

Units to measure emissions (Case-control)

Certification system: Low emission floors and other techniques

Green means available and < 8.4 kg NH3/cow/year

Red means no appropriate report or >8.4

18

Examples floor types (definite emission factor)

Swaans concrete floor G6

Proflex Meadow

Green flag floor with flaps

Lely sphere

Network of farmers in preparation

Development separation feces and urine

- Use urine as Renure (Recovered Nitrogen from manure)
 - less cost fertilizer
 - less gass use (CO2 emission)
- Less NH3 emission
- Make feces pumpable or stackable

Add acid or water to urine or make pellets

Indication ammonia emission 2 separation techniques

Separation technique	NH3 % Of reference
1. Permeable plate	
a. Plate 1	higher
b. Plate 1 and acidification	bit lower
c. Plate 2 and acidification	lower
d. Extra flushing plate	promising
2. Cowtoilet	Ca. 2/3

Methane no reduction

Final results Cowtoilet at end 2022 Permeable plate (ZeraFlex) in development

Distribution NH₃-emission stable, storage and field

Reference: slurry from storage under slatted floor Permeable plate in combination with acidification of urine

Add water to feces to make it pumpable

Field application with injector

Flow of feces and urine on commercial farm

Topics

1. N - crisis

- 2. Reduction potential NH3 and CH4
- 3. Research and development on research and pilot farms

4.Towards resilient farming (wider view: Europe)

Mitigation strategies

Animal - amount

Animal - breeding

Animal - feeding

Grazing and grassland

Crops

Soil and water

Housing

Storage

Spreading manure and fertilizing

Energy, general

Mitigation strategies

Animal - amount

Animal - breeding

Animal - feeding

Grazing and grassland

Crops

Soil and water

Housing

Storage

Spreading manure and fertilizing

Energy, general

Experiments

- Farmplan
- Simulate strategies

27

C Marcas, THE RESILIENT FARMER esilience Weathering the challenges of life and the land

Strategies for the future; how to be resilient?

- Scaling up
- Intensive
- Low cost
- High tech
- Specialize
- Animal
- Innovate
- Farm level

Added value

Mixed farming

Close farms

Resilience

- 1. Robust
- 2. Adaptation
- 3. Transformation

Strategies for the future

- Scaling up
- Intensive
- Low cost
- High tech
- Specialize
- Animal
- Innovate
- Farm level

- - Added value

Regional level

Solutions

- 1. Optimize and Adapt
 - less emissions
 - welfare
 - biodiversity
- 2. Transform
 - new business
 - (food, energy, ...)
 - entrepreneurship

Challenges Climate Care Cattle farming

THE

RESILIEN

FARMER

Weathering the challenges of life

and the land

Solutions:

- Management & technique
- Entrepreneurship

Ouestions

Farm and regional level