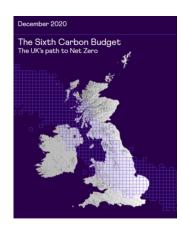
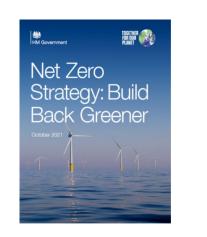
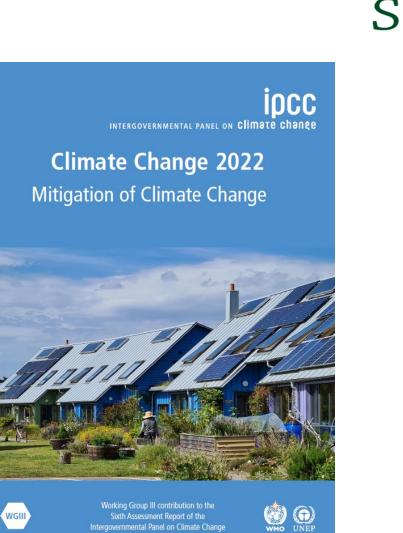
Emissions, grassland and biodiversity and role of carbon footprint tool


Dr Paul R. Hargreaves Professor Bob Rees Julian Bell


Leading the way in Agriculture and Rural Research, Education and Consulting

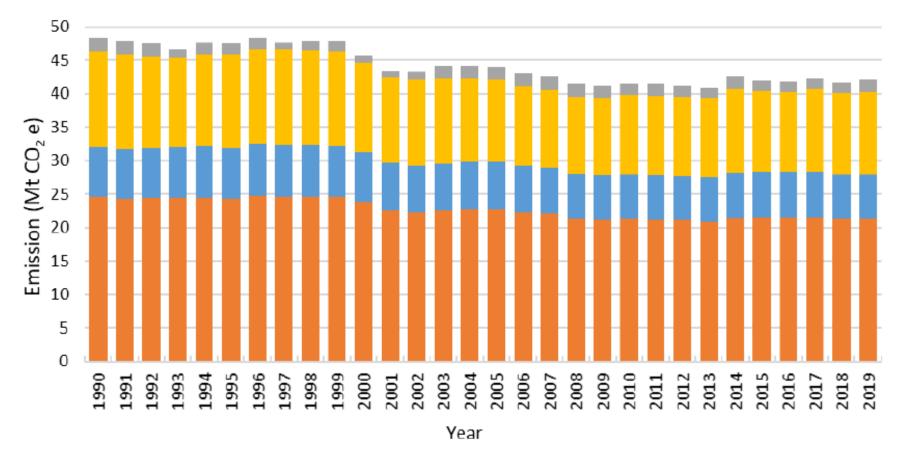
Move towards net zero

- The EU aims to be climate-neutral by 2050 an economy with net-zero greenhouse gas emissions.
- Heart of the European Green Deal
- The UK has set an ambitious target to reduce greenhouse gas emissions to 'net-zero' by 2050
- Agriculture and land use will be critical



- Halt the rise in emissions by 2025
- Halve emissions by 2030
- Net zero by 2050
- Limiting temperature rise to < 1.5°C now highly unlikely

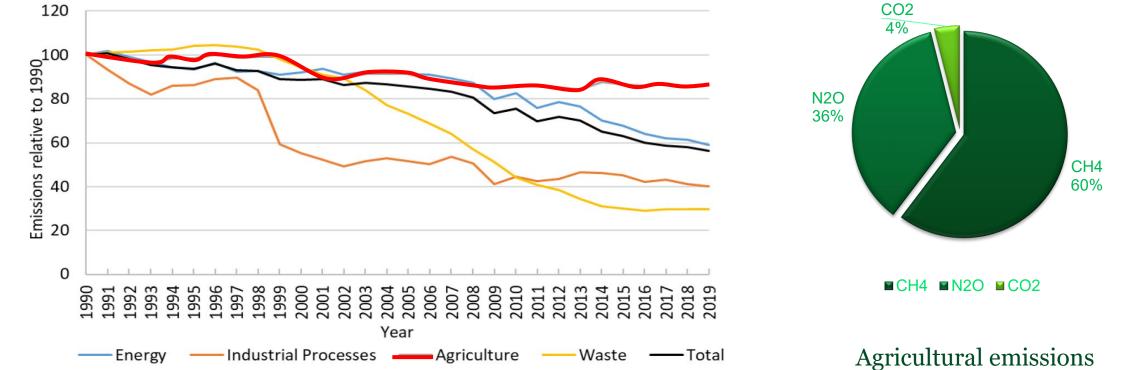
Agriculture and land-use are different



- Biological emissions
- Non-CO₂ greenhouse gases
- Emissions and uptake
- Food production is a basic human need
- Wider socio-economic implications
- Inertia

Agricultural greenhouse gas emissions

"Progress in **agriculture and land use** has repeatedly failed to meet the indicators outlined in the Committee's progress reports in recent years."


■ Enteric Fermentation (3A) ■ Manure Management (3B) ■ Agricultural Soils (3D) ■ Other (3F, 3G, 3H, 3J)

SRUC

CCC 2022 UK National inventory report 2021

UK greenhouse gas emissions

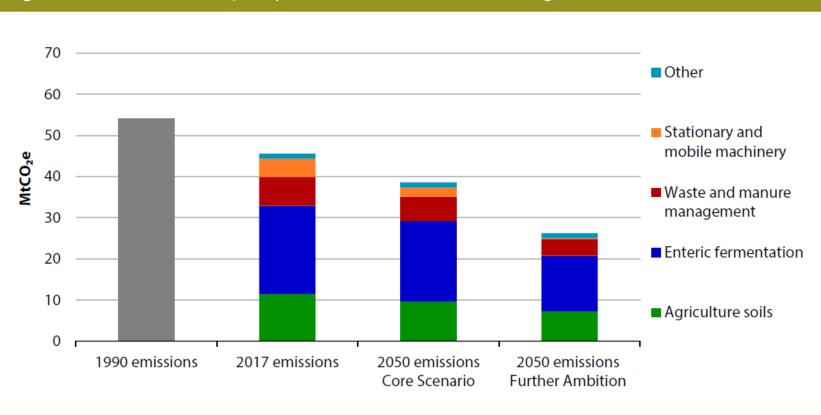
Trends in emissions by sector relative to 1990

UK National Inventory Report 2021

What has been happening?

Methane (CH_4) emissions generally contribute the greatest proportion of GHG's

- CH₄ contributing 60% of agricultural greenhouse gases in the UK
- Emissions of nitrous oxide (N₂O), an important greenhouse gas (third most persistent), contributes 36% of the UK emissions


Some successes

- Milk production and efficiency in the UK dairy industry has resulted in GHG reductions, with total emissions falling by 16.1% (1.12 Mt $\rm CO_2$ -eq) between 1990 and 2020

The carbon challenge – UK agriculture to cut carbon emissions 42% by 2050 (46mt C to 26mt C)

Figure 7.3. Scenarios for very deep emissions reductions from the agriculture sector

Source: BEIS (2019) *Final UK greenhouse gas emissions national statistics 1990-2017*; SRUC, ADAS and Edinburgh University (2019) *Non-CO₂ abatement in the UK agriculture sector by 2050*; and CCC calculations.

How to measure and meet carbon reduction targets?

- Establish a baseline measure
- Then monitor, manage, verify improvements
- Verified industry standards
- Map production chain by stage
- Life cycle assessment
 - Greenhouse Gases
 - Key Performance Indicators feed conversion ratio, mortality, energy use.
- Identify measures that will deliver environmental and financial wins for farm and whole supply chain
- Individual and group working

What is Agrecalc?

- Agricultural Environmental / Efficiency Calculator
 - Web-based calculator (<u>www.agrecalc.com</u>)
 - Estimates the type, source and extent of GHG emissions produced from:
 - whole farm
 - individual farm enterprises
 - products

Greenhouse Gases assessed by AgreCalc

- The three main GHGs assessed by Agrecalc[©] and their sources include:
 - Nitrous oxide (N2O) released during the application of synthetic and organic fertilisers to the soil, from urine deposition by grazing animals and from crop residues
 - Methane (CH4) produced as a natural by-product of enteric fermentation during ruminant digestion and from management of organic manure
 - Carbon dioxide (CO2) produced through burning fossil fuels to produce energy, embedded in purchased inputs and disposal of waste
- Calculates emissions from the above sources up to the farm gate, including emissions associated with purchased inputs

Agrecalc methodology

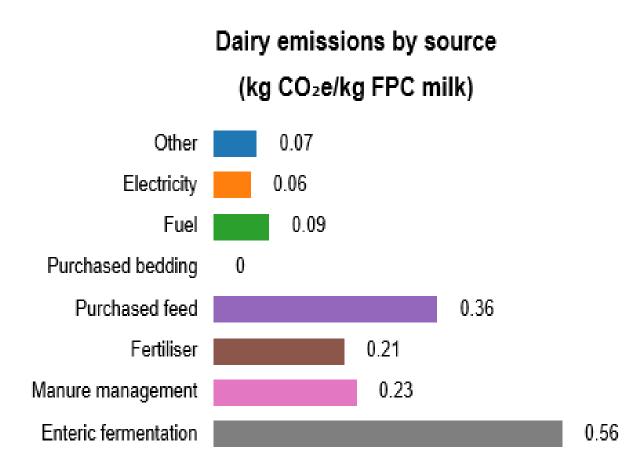
- The carbon emissions methodology employed is consistent with international and national standards including:
 - Intergovernmental Panel on Climate Change (IPCC)
 - BSI standard for life cycle analysis (PAS 2050:2011)
 - Feed Print 2015-08
- SRUC use a Tier 2 methodology when calculating GHG emissions from ruminants, pigs and poultry (Tier I is normally used in UK for pigs and poultry).
- Tier 2 allows changes in performance and diet to be fully captured

Carbon calculations – Land and crops & Energy

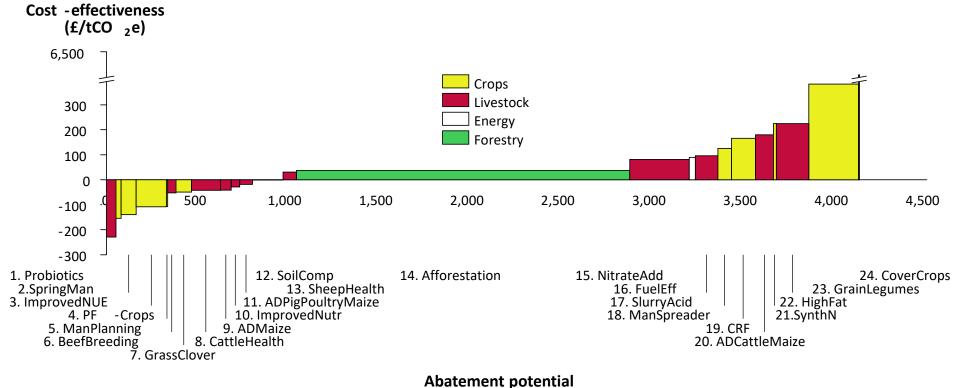
Activity	GHG	Data
Land use	Nitrous oxide	Cropping
Machinery use	Carbon dioxide	Fuel use
Energy use	Carbon dioxide	Fuel and electricity
Fertiliser - manufacture	Carbon dioxide	Fertiliser use
Fertiliser - application	Nitrous oxide	Fertiliser use
Manure & Slurry - application	Nitrous oxide	Manures applied

Carbon calculations – Livestock

Activity	GHG	Data
Livestock metabolism	Nitrous oxide Methane	 Average numbers Weights Growth rate Age at slaughter Milk production
Feed - production	Carbon dioxide	Quantities and types of feed used

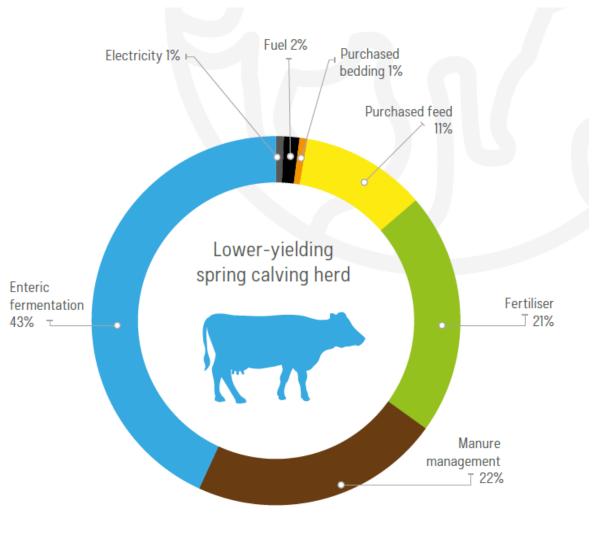

SRUC Agrecalc - results

- Emissions are typically displayed in terms of CO2e (CO2 equivalents) as an emissions intensity (i.e. CO2e per unit of output), commonly known as a carbon footprint
- Allows comparisons to be made with other farms or enterprises and allows farm production to be taken into account
- Farms with a low carbon footprint are generally the most efficient.
- AgreCalc© benchmarks carbon footprint results against similar enterprises, highlighting areas where improvements can potentially be made, improving efficiency


SRUC Agrecalc results – Dairy

Carbon mitigation – where to start? Efficiency gains. SRUC MACC work

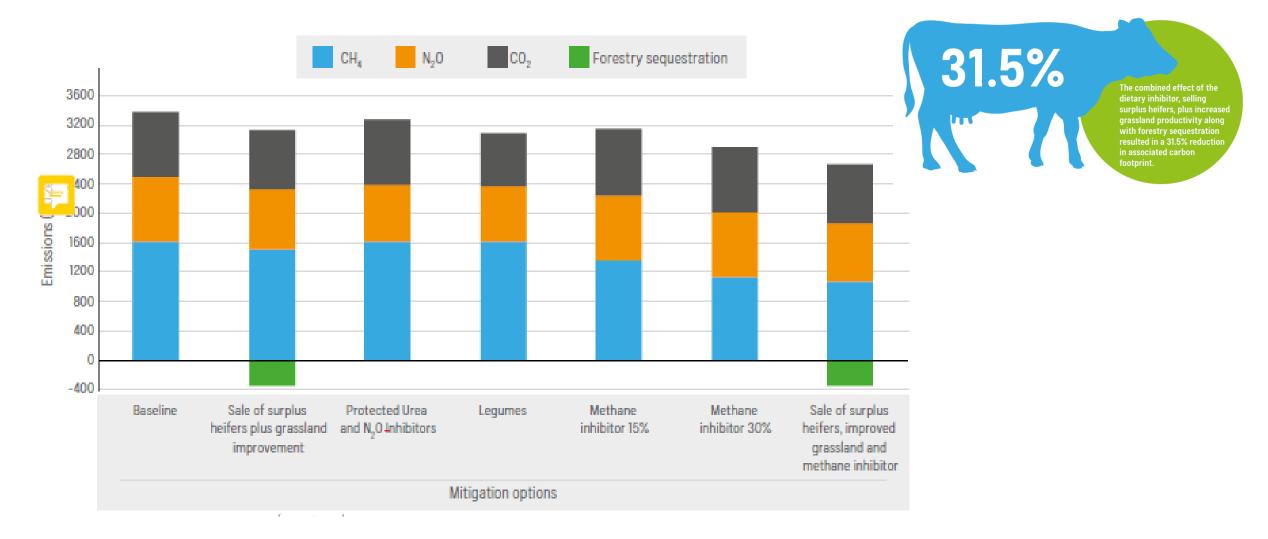
Dairy farm mitigation – recent SRUC agrecalc examples


Table 1 – Mitigation measures

Mitigation action	Description	Carbon savings from	Feas- ibility	Cost
M1 - Improve grass silage quality and yield	Re-seed arable land with new grass/legume leys, raise silage quality from average to top third. (Energy 11.5-12.3ME, CP 13.2- 14.2%, silage yield per ha +10%). Reduce purchased feed (rapemeal) & home grown barley use.	Reduced embedded carbon from lower feed purchases and home grown grain use, lower enteric methane from higher digestibility of diet.	High	Low/ positive
M2 - Home grown protein	Replace oilseed rape with spring beans in arable rotation to displace purchased rapemeal. Replace rapestraw with wheat straw.	Net reduction as home grown pulses are lower carbon than purchased rapemeal.	High	Med/low
M3 - Trailed shoe slurry application	Apply all liquid manures with a trailed shoe replacing existing splash plate system. Leading to reduced need for artificial nitrogen - 10kg N per ha across 1,164 ha forage = 11,654kg N saved.	Reduced embedded carbon from lower fertiliser purchases. Volatilisation losses of ammonia and consequent nitrous oxide are reduced by half from slurry application and lower due to reduced fertiliser use	High	Low

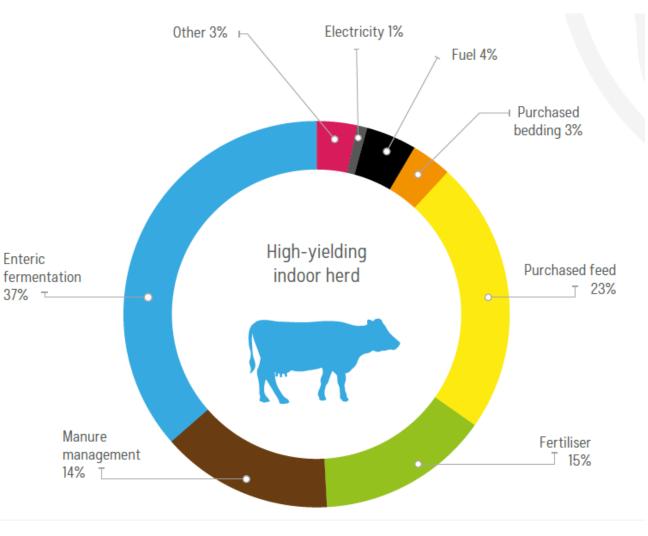
Dairy Case Study Farm 1 -Spring calving, grazed grass focused farm

- 394 Crossbred cows
- 203.5 ha platform
- 5267 litres/cow;
 4.5%BF & 3.67%P
- 24 month age at 1st calving
- Total emissions
 - 3374 t CO2-eq
 - 1.46 kg CO2-eq/kg milk


Dairy Case Study Farm 1 -Spring calving, grazed grass focused farm

Mitigation options Lower-yielding, spring calving herd	Total emi (t CO ₂ -eq from bas) and % change		footprint eq/kg milk) and % from baseline
Baseline	3374		1.46	
1. Sale of surplus followers and improved grassland If released land used for forestry	3116 2762	-7.6% -18.1%	1.35 1.20	-7.5% -17.8%
 Application of fertiliser amendments protected urea and N₂O inhibitors 	3280	-2.8%	1.42	-2.7%
3. Inclusion of legumes in grassland	3092	-8.4%	1.34	-8.2%
 Employing methane inhibitor: at 15% effectiveness at 30% effectiveness 	3134 2893	-7.1% -14.3%	1.36 1.25	-6.8% -14.4%
 Combined effect: Sale of surplus followers, plus improved grassland plus dietary methane inhibitor (30% effective) If released land used for forestry 	2662 2308	-21.1% -31.6%	1.15 1.00	-21.2% -31.5%

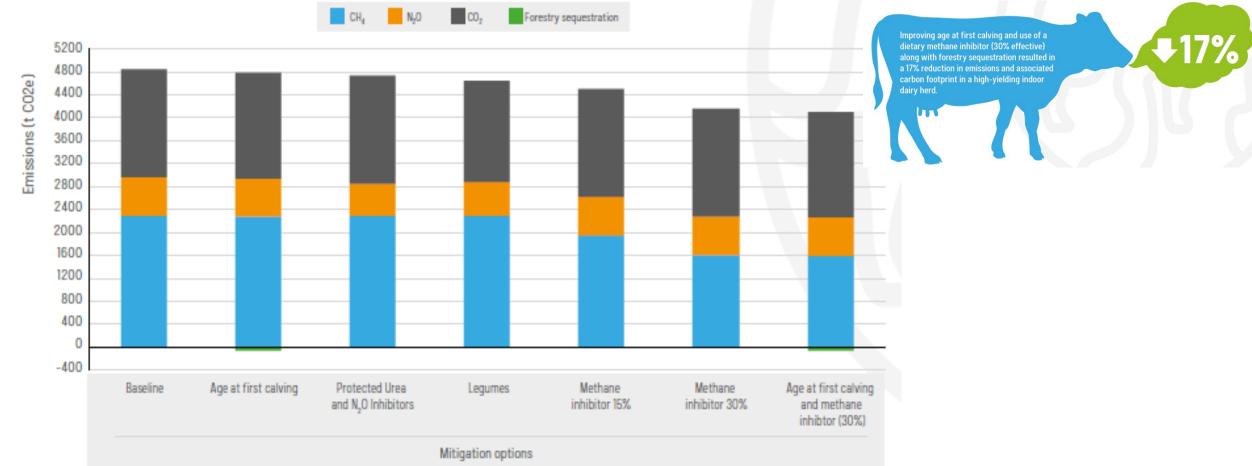
Dairy Case Study Farm 1 -Spring calving, grazed grass focused farm



Dairy Case Study Farm 2 -Higher-yielding indoor dairy herd

SRUC

- 410 Holstein cows
- 252 ha platform
- 10,377 litres/cow,
 3.49 %BF & 3.24 %P
- 25 month age at 1st calving
- Total emissions
 - 4851 t CO2-eq
 - 1.18 kg CO2-eq/kg milk


Dairy Case Study Farm 2 -Higher-yielding indoor dairy herd

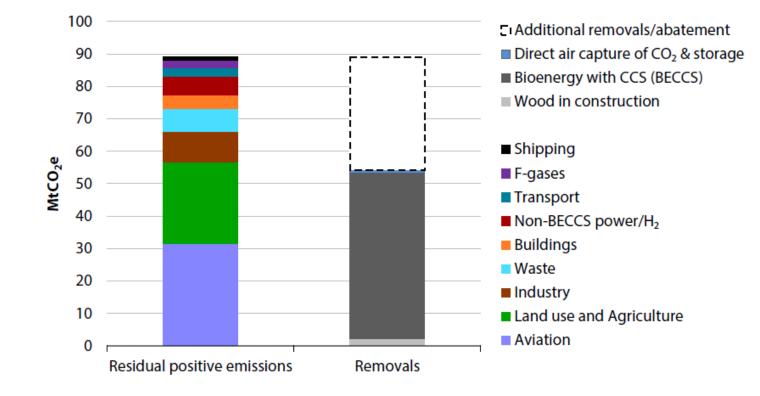
Mitigation options— higher-yielding, indoor herd		ssions (t CO ₂ -eq) ange from baseline		ootprint (kg CO ₂ - lk) and % change eline
Baseline	4851		1.18	
1. Reducing age at first calving from 25 to 24 months	4784	-1.4%	1.17	-0.8%
If released land used for forestry	4721	-2.7%	1.12	-5.1%
2. Application of fertiliser amendments protected urea and N ₂ O inhibitors	4733	-2.4%	1.15	-2.5%
3. Inclusion of legumes in grassland	4659	-4.0%	1.14	-3.4%
4. Employing methane inhibitor:				
at 15% effectiveness	4508	-7.1%	1.10	-6.8%
at 30% effectiveness	4164	-14.2%	1.01	-14.4%
5. Combined effect:				
Reducing age cows first calf plus dietary methane inhibitor (30% effective)	4103	-15.4%	1.00	-15.3%
If released land used for forestry	4040	-16.7%	0.98	-16.9%

Dairy Case Study Farm 2 -Higher-yielding indoor dairy herd

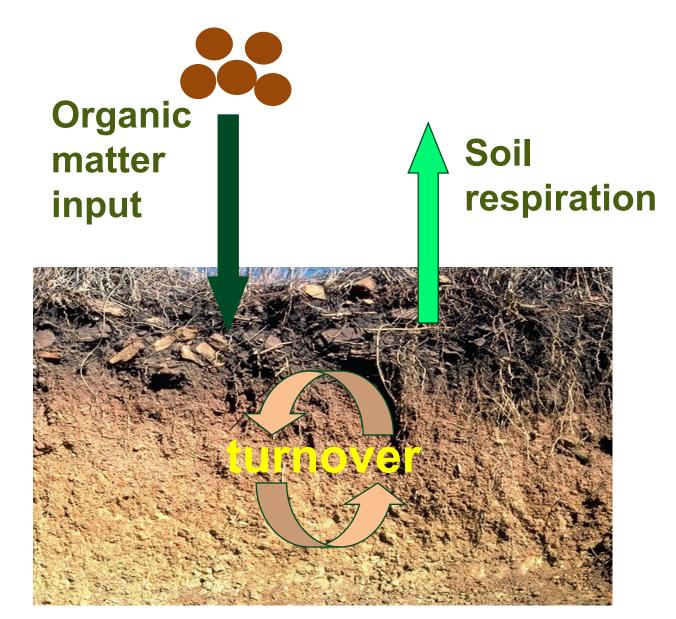
Application of mitigations to National Inventory

- Scaled down National Inventory model (200 cow herd) explored impact of improved productivity
- Land released, and utilised for forestry, delivered 15% reduction in net GHG emissions

Inventory.				
	Impact on			
	GHG reduction for UK dairy sector		GHG reduction for whole of UK agriculture	
Mitigation options	kt CO ₂ -eq	%	%	
Methane inhibitor used in all dairy animals	2268	20.3	5.6	
Methane inhibitor used only in cows	1764	15.8	4.4	
Increased productivity	1006	8.7	2.5	
Reduce age at first calving from 29 to 24 months	467	4.0	1.2	
Use of nitrification inhibitor with dairy slurry application	178	1.6	0.4	
Dairy slurry processed by AD	1343	12.0	3.3	
Use of nitrification inhibitor with all N fertiliser applied to all UK grassland	246	9.7	0.6	
Combined effect of mitigations 1,3,4,5,6	5030	45.0	12.5	


Table 5 Impact of key mitigations on GHG emissions from the whole UK dairy sector and on the overall Agricultural

Carbon sequestration


Balancing emissions & removals by 2050

- Mitigation is not enough
- Carbon removals needed for residual emissions to reach net zero targets

What is carbon sequestration?

At equilibrium Input = Output

Opportunities

- Low cost GHG mitigation
- Co-benefits in terms of soil fertility, resilience & crop production
- Widespread opportunity

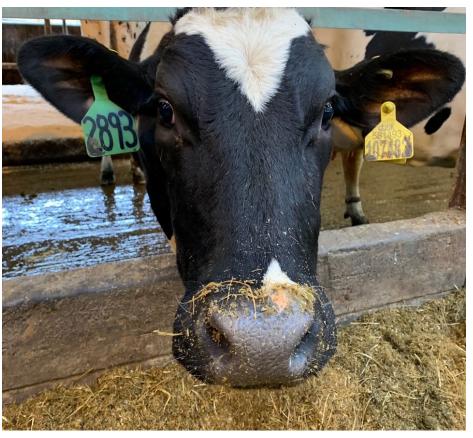
Challenges

- Reversibility of carbon storage & carbon saturation
- Non-CO₂ emissions
- Measurement Reporting and Verification

Still large uncertainties!

Interaction of climate & management Specific management interventions

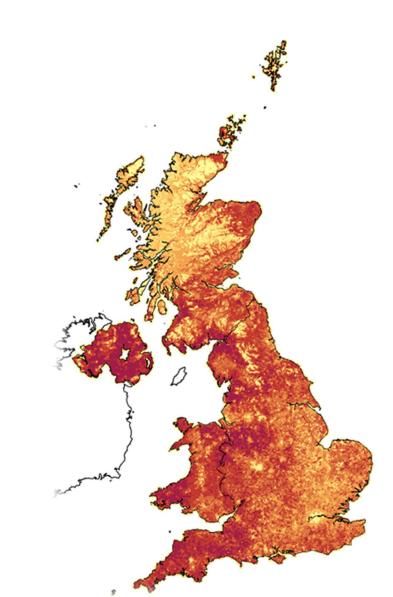
- Hedgerows
- Agroforestry
- Biochar
- Rock weathering


Accounting & verification

Conclusions

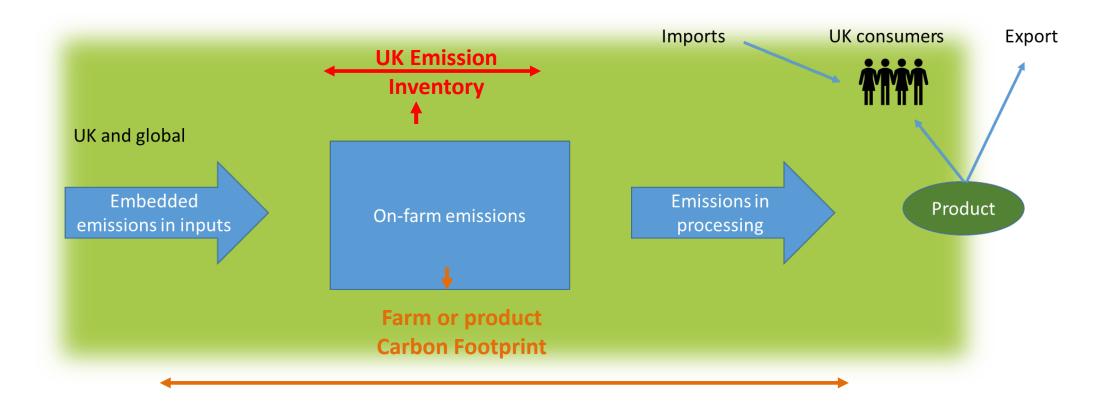
- A need for action on reduction of GHG emissions to achieve net zero
- An understanding of what is on farm at the moment is very important
- Carbon footprinting can do this but methods must be robust
- Mitigation measures are need and extremely important
- Not one solution but a range of different approaches combined
- Soil carbon removal can contribute to the solution the science still has large uncertainties

Thank you Any Questions?

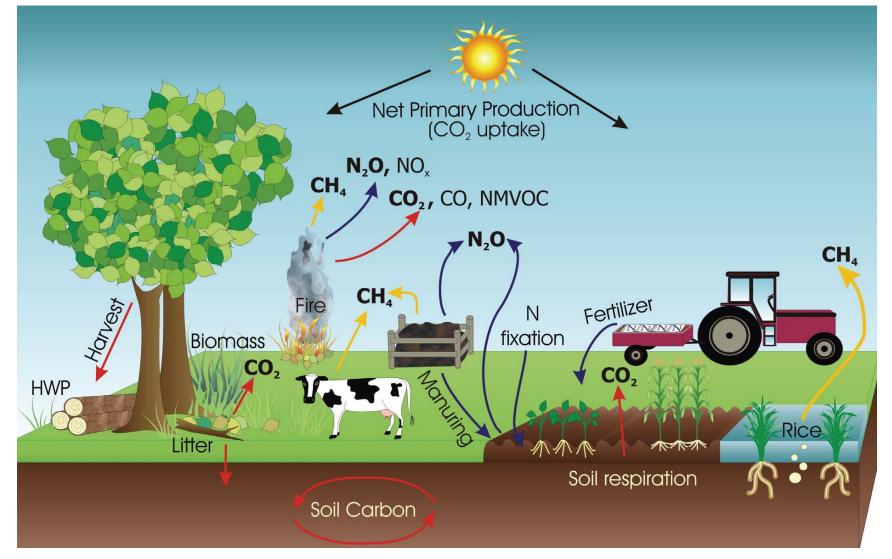

SRUC

Scottish Government Riaghaltas na h-Alba gov.scot

UK GHG Emission Inventory

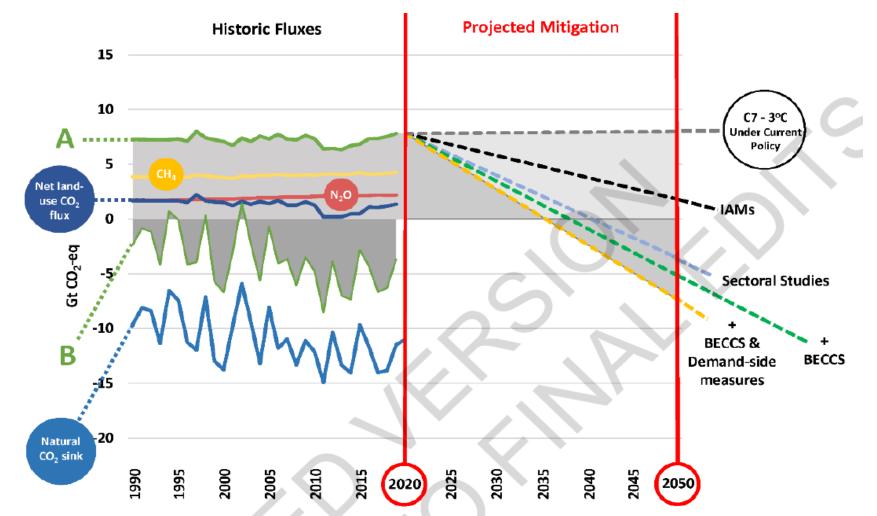


- For national level reporting under UNFCCC according to IPCC protocols
- Is the metric against which UK compliance with emission reduction targets will be assessed
- Comprises 5 reporting categories:
 - Energy
 - Industrial Processes
 - Agriculture
 - LULUCF
 - Waste


System boundaries very important

Agricultural emissions

How can we achieve carbon sequestration?


Land use, land use change, forestry and management type	Change in soil C stock
Grassland to plantation forest	-10%
Native forest to plantation forest	-13%
Native forest to cropland	-42%
Grassland to cropland	-59%
Native forest to grassland	+8%
Cropland to grassland	+19%
Fallow to grassland	+150 to 236%
Cropland to plantation	+18%
Cropland to forestry	+50%
Multi-species pasture rotations	+66%
Cover cropping	+6%
Liming	+30%

Effects of land use change (LUC) on soil carbon that are captured in current reporting approaches

IPCCs projections for the agriculture and land use sector

